3 Ways to Regulate Insulin That Have Nothing to Do with Food

http://www.marksdailyapple.com/3-ways-to-regulate-insulin-that-have-nothing-to-do-with-food/ <![CDATA[

Today’s guest post is served by a good friend of Mark’s Daily Apple, Dr. Sarah Ballantyne, PhD, or as you might know her– The Paleo Mom .

Regulating blood sugar levels is a key feature of any health-promoting diet [15, 20] . High blood sugar levels after eating are a major stimulator of reactive oxygen species (ROS), which are chemically reactive molecules that have important roles in cell signaling (the complex communication between and within cells) and in homeostasis (maintenance of a stable environment inside and outside the cell). But ROS are also potent signals for inflammation and stimulate the production of proinflammatory cytokines (chemical messengers), and also injure cells and tissue. As a result, chronic high blood sugar levels can cause serious damage throughout the body, including to blood vessels and vital organs. This is why diabetes (chronical hyperglycemia) is associated with higher risk of stroke, cardiovascular disease, vision problems, kidney disease, and nerve damage.

When we consume carbohydrates, blood sugar increases. In response to the rise in blood sugar, the pancreas releases the hormone insulin, which facilitates the transport of glucose into the cells of the body and signals to the liver to convert glucose into glycogen and triglycerides for storage.

Using a wide array of enzymes, liver cells (called hepatocytes) first convert excess glucose into glycogen (which is stored in the liver and in muscle tissue) for short-term storage. When needed, the glycogen is rapidly converted back into glucose and released into the blood to maintain normal blood sugar levels and provide energy for the body’s cells between meals. There is also a maximum glycogen storage capacity in the muscle tissue and liver, so whatever glucose is consumed beyond that amount is converted into triglycerides (molecules composed of three fatty acids and a glycerol) for longer-term storage in adipocytes (fat-storage cells). This process is also stimulated by insulin. Triglycerides are released by the liver into the blood to circulate to adipose tissues (fat deposits), where they are taken up by adipocytes. So when we eat a high-carbohydrate meal, blood glucose and blood triglycerides are increased.

Chronically elevated blood sugar levels stimulate adaptations within cells, rendering them less sensitive to insulin. These adaptations may include decreasing the number of receptors to insulin embedded within the cell membranes and suppressing the signaling within the cell that occurs after insulin binds to its receptor. This causes the pancreas to secrete more insulin to lower the elevated blood-glucose levels. This is called insulin resistance or loss of insulin sensitivity, when more insulin than normal is required to deal with blood glucose. When blood-sugar levels can no longer be maintained in a normal range (due to the pancreas being unable to keep up with insulin demand and/or substantial loss or inhibition of insulin receptors in cells), you get type 2 diabetes.

While the Paleo diet and several other popular dietary templates focus on food choices that help to regulate blood sugar levels–generally, by moderating intake of carbohydrates while choosing low-glycemic-load options–blood glucose responses

The post 3 Ways to Regulate Insulin That Have Nothing to Do with Food appeared first on Mark's Daily Apple.